Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Estimates of plant traits derived from hyperspectral reflectance data have the potential to efficiently substitute for traits, which are time or labor intensive to manually score. Typical workflows for estimating plant traits from hyperspectral reflectance data employ supervised classification models that can require substantial ground truth datasets for training. We explore the potential of an unsupervised approach, autoencoders, to extract meaningful traits from plant hyperspectral reflectance data using measurements of the reflectance of 2151 individual wavelengths of light from the leaves of maize (Zea mays) plants harvested from 1658 field plots in a replicated field trial. A subset of autoencoder‐derived variables exhibited significant repeatability, indicating that a substantial proportion of the total variance in these variables was explained by difference between maize genotypes, while other autoencoder variables appear to capture variation resulting from changes in leaf reflectance between different batches of data collection. Several of the repeatable latent variables were significantly correlated with other traits scored from the same maize field experiment, including one autoencoder‐derived latent variable (LV8) that predicted plant chlorophyll content modestly better than a supervised model trained on the same data. In at least one case, genome‐wide association study hits for variation in autoencoder‐derived variables were proximal to genes with known or plausible links to leaf phenotypes expected to alter hyperspectral reflectance. In aggregate, these results suggest that an unsupervised, autoencoder‐based approach can identify meaningful and genetically controlled variation in high‐dimensional, high‐throughput phenotyping data and link identified variables back to known plant traits of interest.more » « less
-
SUMMARY Maize (Zea maysssp.mays) populations exhibit vast ranges of genetic and phenotypic diversity. As sequencing costs have declined, an increasing number of projects have sought to measure genetic differences between and within maize populations using whole‐genome resequencing strategies, identifying millions of segregating single‐nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). Unlike older genotyping strategies like microarrays and genotyping by sequencing, resequencing should, in principle, frequently identify and score common genetic variants. However, in practice, different projects frequently employ different analytical pipelines, often employ different reference genome assemblies and consistently filter for minor allele frequency within the study population. This constrains the potential to reuse and remix data on genetic diversity generated from different projects to address new biological questions in new ways. Here, we employ resequencing data from 1276 previously published maize samples and 239 newly resequenced maize samples to generate a single unified marker set of approximately 366 million segregating variants and approximately 46 million high‐confidence variants scored across crop wild relatives, landraces as well as tropical and temperate lines from different breeding eras. We demonstrate that the new variant set provides increased power to identify known causal flowering‐time genes using previously published trait data sets, as well as the potential to track changes in the frequency of functionally distinct alleles across the global distribution of modern maize.more » « less
-
Abstract BackgroundAccess to biologically available nitrogen is a key constraint on plant growth in both natural and agricultural settings. Variation in tolerance to nitrogen deficit stress and productivity in nitrogen limited conditions exists both within and between plant species. However, our understanding of changes in different phenotypes under long term low nitrogen stress and their impact on important agronomic traits, such as yield, is still limited. ResultsHere we quantified variation in the metabolic, physiological, and morphological responses of a sorghum association panel assembled to represent global genetic diversity to long term, nitrogen deficit stress and the relationship of these responses to grain yield under both conditions. Grain yield exhibits substantial genotype by environment interaction while many other morphological and physiological traits exhibited consistent responses to nitrogen stress across the population. Large scale nontargeted metabolic profiling for a subset of lines in both conditions identified a range of metabolic responses to long term nitrogen deficit stress. Several metabolites were associated with yield under high and low nitrogen conditions. ConclusionOur results highlight that grain yield in sorghum, unlike many morpho-physiological traits, exhibits substantial variability of genotype specific responses to long term low severity nitrogen deficit stress. Metabolic response to long term nitrogen stress shown higher proportion of variability explained by genotype specific responses than did morpho-pysiological traits and several metabolites were correlated with yield. This suggest, that it might be possible to build predictive models using metabolite abundance to estimate which sorghum genotypes will exhibit greater or lesser decreases in yield in response to nitrogen deficit, however further research needs to be done to evaluate such model.more » « less
An official website of the United States government
